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Research Report Summary

This document represents the final report for the AFOSR FA9550-07-1-0179 research program,

carried out by M. De Graef and graduate students Jeremiah MacSleyne and Patrick Callahan

during the period from April 1st, 2008 until September 30th, 2010, at Carnegie Mellon University

(Department of Materials Science and Engineering). During this period, the following objectives

were achieved:

• we have successfully applied 3-D moment invariant analysis to several experimental data sets;

• we have extended 2-D moment invariant analysis to include up to 12th order moments;

• we have initiated the study of higher order moment invariants (3rd and 4th orders) in 3-D;

• we have concluded the optimization of an image registration algorithm employing the concept

of mutual information;

• we have applied the moment invariant approach to synthetically generated microstructures.

The results of this work were presented at several conferences and invited seminars:

• Moment Invariant Shape Descriptors for 2-D and 3-D Microstructure Representation, J. Mac-

Sleyne, J. Simmons and M. De Graef; International Conference on the Texture of Materials

(ICOTOM), Pittsburgh, June 2008.

• Integration of Focused Ion Beam Serial Sectioning and Orientation Imaging Microscopy for

3-D Microstructure Reconstruction in a Ni-base Superalloy, M. De Graef; International Con-

ference on the Texture of Materials (ICOTOM), Pittsburgh, June 2008.

• Representation and Reconstruction of Three-Dimensional Microstructures in Ni-based Super-

alloys, M. De Graef; AFOSR Program Review, Washington DC, 6/16/08;

• From 2-D observations to 3-D microstructures: an overview of recent advances, M. De Graef,

Departmental Seminar, Department of Materials Science and Engineering, University of

Michigan, 11/21/08 (invited);

• From 2-D observations to 3-D microstructures: an overview of recent advances, M. De Graef,

Catholic University of Leuven, Belgium, 1/16/09 (invited);

• 3-D moment invariants for the description of precipitate morphology and evolution in nickel

based superalloys, J. MacSleyne and M. De Graef, TMS Annual Meeting, San Francisco, CA,

2/17/09;

• Turning 2-D images into 3-D data stacks: recent advances, M. De Graef, University of

Antwerp, Belgium, 3/9/09 (invited);
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• Towards a quantitative comparison between experimental and synthetic microstructures, Patrick

Callahan, M. Groeber, and M. De Graef; MS& T, Pittsburgh, October 2009.

• From 2-D observations to 3-D microstructures: an overview of recent advances, M. De Graef,

University of Antwerp, Belgium, April 2009.

• Beyond the spherical cow: a shape-first approach to modeling physical quantities, M. De Graef,

FZU, Czech Republic, September 2009.

• Using moment invariants to assess the realism of digitally constructed microstructures, P.

Callahan, M. Groeber, and M. De Graef, TMS Annual meeting, Seattle, February 2010.

Furthermore, the following papers were published or submitted:

• On the Use of Moment Invariants for the Automated Analysis of 3-D Particle Shapes, J.

MacSleyne, J. Simmons and M. De Graef, Modeling and Simulations in Materials Science

and Engineering, 16, 045008 (2008).

• On the use of moment invariants for the automated classification of 3-D particle shapes, J.

MacSleyne, J.P. Simmons and M. De Graef, Modeling and Simulations in Materials Science

and Engineering, 16, 045008 (2008)

• On the Use of 2-D Moment Invariants for the Automated Classification of Particle Shapes,

J. MacSleyne, J. Simmons and M. De Graef, Acta Materiala, 56, pp. 427-437 (2009);

• Application of joint histogram and mutual information to registration and data fusion problems

in serial sectioning microstructure studies, E.B. Gulsoy, J.P. Simmons, and M. De Graef,

Scripta Materialia, 60, 381-384, (2009);

• Application and Further Development of Advanced Image Processing Algorithms for Auto-

mated Analysis of Serial Section Image Data, J.P. Simmons, P. Chuang, M.L. Comer, M.

Uchic, J.E. Spowart, and M. De Graef, ””, Modelling and Simulations in Materials Science

and Engineering, 17, 025002 (2009)

• M.D. Uchic, M. De Graef, R. Wheeler, and D.M. Dimiduk, “Microstructural tomography of a

Ni70Cr20Al10 superalloy using focused ion beam microscopy,” Ultramicroscopy, vol. 109, pp.

1229-1235 (2009).

• J.P. MacSleyne, M.D. Uchic, J.P. Simmons, and M. De Graef, “Three-dimensional analysis

of secondary γ′ precipitates in Rene-88 DT and UMF-20 superalloys,” Acta Materialia, vol.

57, pp. 6251-6267 (2009).

The following pages describe briefly the most important findings.
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I Moment invariants in 3-D

We have derived a theoretical model for the 3-D moment invariants of second order. These are

three numbers, represented by the symbols 0 ≤ Ω̄i ≤ 1 (i = 1, 2, 3), which are computed starting

from the shape of an object. The moment invariants are invariant with respect to either similarity

or affine coordinate transformations, which renders them particularly useful as quantitative shape

descriptors that are independent of the reference frame used to represent the object(s). We have

applied the moment invariant approach to the analysis of (a) secondary γ′ precipitate shapes

in two Ni-based superalloys, and (b) synthetically reconstructed microstructures. The following

subsections summarize a few of the highlights of this research.

I.I Application to secondary γ′ precipitates in Ni-based superalloys

Focused ion beam serial sectioning was used to study the 3-D morphology of secondary γ′ precip-

itates in two nickel-based superalloys: René-88 DT, a turbine disk alloy, and UMF-20, an exper-

imental alloy. The precipitate morphology was reconstructed from serial section images using a

multi-step image processing approach, including registration, intensity corrections, segmentation,

and segmentation cleanup. A total of 260 dendritic secondary γ′ precipitates were obtained for the

René-88 DT alloy, and 477 cuboidal precipitates in the UMF-20 alloy.

Ni Co Cr Mo W Al Ti Nb C B

Bal. 13 16 4 4 2.1 3.7 0.7 0.03 0.015

Table 1: René-88 DT nominal alloy composition [wt. %]

René-88 DT (Damage Tolerant) is a highly alloyed polycrystalline nickel-base superalloy, pro-

duced by powder metallurgy, and commonly used in turbine disks. René-88 DT has a γ′ volume

fraction of around 42 % (for the standard heat treatment), a low positive lattice mismatch (0.05%),

and a γ′ solvus at 1130◦C [1]. The chemistry is listed in Table 1. The standard heat treatment is a

one hour solution treatment at 1150◦C followed by a delayed oil quench and aging for eight hours

at 760◦C [1].

Ni Al Ru Ta Re W Co Cr

Bal. 6.0 5.7 8.1 4.5 3.0 2.4 6.7

Table 2: Composition in wt. % of the UM-F20 alloy [2].

The UMF-20 alloy examined in this study is an experimental Re-containing nickel-base super-

alloy with high Re and Co content, and a negative lattice mismatch between the γ′ precipitates

and the γ matrix phase [3]. The sample was provided in the as-cast condition and the chemical

composition is listed in Table 2. This alloy has liquidus and solidus temperatures of 1400◦C and
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1366◦C, resp. [2]; additional alloy information can be found in [3–5]. The sample examined under-

went a standard heat treatment, with a solution treatment for twelve hours at 1300◦C, followed by

aging at 1100◦C for ten hours, and a water quench.

Before the γ′ precipitate shapes can be analyzed quantitatively, the experimental 2-D sections

must be converted to 3-D volume data sets. This conversion consists of four steps:

• image registration;

• correction for intensity shifts and fluctuations;

• image segmentation;

• post-segmentation processing.

We have developed algorithms to carry out all the above steps. These algorithms lead to a 3-

D segmented (binary) stack, i.e., a stack in which each voxel is assigned a value of 0 (for the γ

matrix) or 1 (for the γ′ precipitates). Such a binary stack can be used in a variety of microstructure-

based modeling algorithms, such as the Fourier space framework of Lebensohn [6] or the two-point

statistics approach of Fullwood et al. [7]. For visualization purposes, however, the 3-D stacks are

too voxelated to be rendered directly, and they must be turned into a surface representation in

terms of triangular surface elements. There are many algorithms available for surface extraction,

and for the present work we have used a Marching Cubes algorithm described by Lorenson and

Cline [8]. The surface triangulations were stored in the Stereolithography file format (STL) and

rendered using the public domain package Paraview [9].

For the René-88 DT data set, the final 3-D stack had dimensions of 9.5 × 6.8 × 3.1 µm3 and

a total of 260 γ′ precipitates were contained within this volume. For the UMF-20 data set, the

resulting stack had dimensions of 10.5×10.0×4.3 µm3 and contained a total of 477 γ′ precipitates.

Fig. I(a) shows a 3-D rendering of all 260 γ′ precipitates in the René-88 DT data set, and Fig. I(b)

the corresponding microstructure for the UMF-20 alloy, with 477 precipitates. The precipitates in

the René-88 DT alloy have a complex dendritic shape which is far more difficult to describe than

the nearly cuboidal shapes found in the UMF-20 alloy.
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Figure I: Visualization of the 3-D microstructure of (a) René-88 DT and (b) UMF-20. The box

dimensions are (a) 9.5×6.8×3.1 µm3 and (b) 10.5×10.0×4.3 µm3. There are 260 precipitates in (a),

and 477 in (b); precipitate coloring is random so that individual precipitates can be distinguished.
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The UMF-20 data set consists of 477 γ′ precipitates completely contained within a volume of

10.5 × 10.0 × 4.3 µm3, with a mean precipitate volume of 0.1596 µm3. The aspect ratio scatter

plot for this set of precipitates is shown in Fig. II(a), along with a contour plot of the aspect

ratio distribution. Although there is a wide range of aspect ratios, the points tend to cluster near

the oblate line (τ1 = τ2). While this plot is consistent with a qualitative examination of the 3-D

visualization shown in Fig. I(b), it provides only limited morphological information.

Fig. II(b) shows the distribution of the γ′ precipitates in the normalized moment invariant

space. Note that the majority of points are clustered in the region 0.8 ≤ Ω̄3 ≤ 1.0, the former value

being close to that of the cube. This indicates that the majority of precipitates have morphologies

which range between those of the rectangular prisms (Ω̄3 = 0.7878) and the ellipsoids (Ω̄3 = 1).

This “cuboidal” morphology can be observed clearly in the 3-D visualization in Fig. I(b). Since Ω̄1

and Ω̄2 can be thought of principally as aspect ratio descriptors, we note that the range of values

observed for Ω̄1 and Ω̄2 is in agreement with the results seen in the aspect ratio scatter plot of

Fig. II(a).
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Figure II: (a) aspect ratio plot for the 477 γ′ precipitates of the UMF-20 alloy; the inset shows the

contour plot of the aspect ratio distribution. (b) shows the distribution of the precipitates in the

normalized moment invariant space. The two solid circles on the isotropic curve represent the cube

and the sphere.

Since Ω̄3 is an affine invariant, a plot of Ω̄3 as a function of precipitate volume can be used

to determine if there is a systematic variation in precipitate morphology with precipitate size

(Fig. III(a)). The dashed line indicates the value of Ω̄3 for the class of rectangular prisms. We

note that the points are principally located within the “cuboidal” region (0.7878 ≤ Ω̄3 ≤ 1).

Overall within this “cuboidal” region there is little change in morphology over a range of precipitate

volumes.



AFOSR FA9550-07-1-0179 Final Report 04/01/08–09/30/10/De Graef—7

0.0001 0.0010 0.0100 0.1000 1.0000 10.0000

1.0

0.0

0.2

0.4

0.6

0.8

Rectangular Prisms

(b)

(c)

(d)

(e)

(f)

(g)

(a)

Figure III: (a) log-linear plot of Ω̄3 vs. precipitate volume; most particles lie above the “prism” line.

The majority of the particles below the line are morphological outliers, as shown in (b) through

(g).

Most of the precipitates that lie below the “prism” line correspond to morphological outliers.

There are two classes of outliers: artificial outliers, which result from segmentation errors (examples

are shown in Fig. III(b)–(d); connecting ligatures, which are segmentation errors, are indicated by

arrows), and naturally occurring outliers, often with L-shaped morphology, which are a product

of the microstructural evolution (examples in Fig. III(e)–(g)). To evaluate the assumption that

the points below the “prism” line in Fig. III(a) are indeed due to the morphological outliers, we

introduce a new shape parameter, V/Vconv, the ratio of the particle volume to the volume of the

convex hull of the particle. This provides a measure for the convexity of a given shape. Cuboidal

precipitates are expected to have values of V/Vconv close to 1. This is illustrated in Fig. IV, where

Ω̄3 is plotted as a function of the shape quotient Q. The data points are colored according to

the value of V/Vconv. Note that the precipitates within the “cuboidal” region are nearly convex,

with values of V/Vconv near 1. To provide a reference point, the value of Ω̄3 and Q for the regular

rectangular prism is indicated on the plot by the grey square. The plot shows a strong correlation

between the three parameters Ω̄3, Q and V/Vconv. All points which lie outside the dense cloud of

points can be considered as outliers, and a further analysis must be used to distinguish between

the two classes of outliers; such an analysis may include the use of higher order moment invariants.

Fig. V(a) shows the results of a moment invariant analysis of 260 dendritic γ′ precipitates in

the René-88 DT alloy, represented in the normalized moment invariant space. Most precipitates
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Figure IV: Plot of Ω̄3 as a function of Q for 477 γ′ precipitates from a UMF-20 nickel based

superalloy. The points are colored according to the value of V/Vconv, which provides a measure of

the precipitate convexity. High surface area particles lie on the lower left of the figure. The gray

square indicates the location of the cube, whereas the upper right corner corresponds to the sphere.

are clustered close to the isotropic curve, in agreement with the 3-D visualization (Fig. 8(a) in Part

I) which does not reveal any precipitates with a large aspect ratio. The wide range of Ω̄3 values

in Fig. V(a) indicates that a range of morphologies, very different from cuboidal or ellipsoidal, is

present in the experimental data-set. The highly dendritic nature of the larger precipitates gives

rise to a large surface-to-volume ratio, or, equivalently, a small value of the dimensionless shape

quotient Q.

The relationship between Ω̄3 and Q is illustrated Fig. V(b). The data points are colored

according to the precipitate volume. Points corresponding to the precipitates in the inset are

indicated with black circles. The variation of precipitate morphology with size is clearly visible

from this plot. As the precipitates grow in size, they appear to follow a trajectory within the

Ω̄3 − Q plot; they start out as near-cubes (near the point (0.524, 0.788) in the upper right hand
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Figure V: (a) Plot of the calculated normalized second order moment invariants for 260 γ′ precipi-

tates. (b) Plot of Ω̄3 as a function of Q for the 260 γ′ precipitates from a René 88-DT superalloy.

The color scheme corresponds to the particle volume. The precipitates shown in the inset corre-

spond to the black circles. The horizontal dashed line provides indicates the location of the class

of rectangular prisms, with the cube located at the position indicated on the far right.

corner) and, as they grow and evolve into a more complex dendritic shape, they “move” to the lower

left corner of the diagram, corresponding to larger volume, larger surface area, and smaller affine

moment invariant Ω̄3. A simpler characterization based solely on the particle size distribution and

the aspect ratios would not be capable of revealing this correlation between the three parameters

shown in Fig. V(b). Despite the complexity of the dendritic precipitate shapes, the combined use

of the moment invariant Ω̄3 and the shape quotient Q provides a quantitative description of the

variation of precipitate morphology with precipitate size.

The results obtained in this research project show that it is possible to describe and quantify

the shapes of secondary γ′ precipitates in Ni-based superalloys in a quantitative way, by making

use of the concept of moment invariants. This approach is quite general, easy to implement, and is

not restricted to a particular class of shapes; indeed, our earlier theoretical paper on 3-D moment

invariants [10] shows that the approach is valid for all 3-D shapes.

While it is not possible to reconstruct a 3-D shape when only its second order moments are

known; an arbitrary shape can be reconstructed exactly only if all its moments are known. There-

fore, the second order moment invariant approach is the lowest order approach possible (the first

order moments do not contain any useful shape information other than the center-of-mass). Given

how simple it is to compute the moment invariants, it is somewhat surprising that they have not

been used before in the study of precipitate shapes. Particle aspect ratios have been used in the

past to describe certain aspects of microstructures, but our theoretical work in this area clearly

shows that there is an additional quantity that must be considered at the same level as the aspect
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ratios of a shape; that is the affine invariant, Ω̄3, which is a descriptor of shape classes. Therefore,

if one desires to construct a description of a shape based on its aspect ratios, then one must also

include the affine invariant, since it is also a second order parameter; indeed, it is the only other

second order parameter that is invariant with respect to affine coordinate transformations. The

correlations between Ω̄3 and Q, shown in Figs. IV and V(b) show a different average slope for the

two shape classes, indicating that the shape quotient provides additional shape information, not

captured by the moment invariants.

From a numerical point of view, it is straightforward to compute higher-order moments µpqr

(p+q+r > 2), and there is some literature on the invariants of third order. It is easy to show that the

third order moments all vanish for a shape with inversion symmetry (most of the shapes considered

in this study have approximate inversion symmetry, so that such a third-order analysis would

not be very meaningful in this case). The number of invariants increases rapidly with increasing

moment order, so that it becomes more difficult to represent them in a graphical way, similar to the

normalized moment invariant space used in this paper. Despite these difficulties, there may be some

benefit in considering the inclusion of third and fourth order moment invariants in the description of

shapes. For statistical distributions, the moments correspond to the following quantities: variance

(second order), skewness (third order), and kurtosis (fourth order). In addition, kurtosis and

variance are often combined in the kurtosis excess. All of these parameters are important to

the description of the shape of a statistical distribution, and we anticipate that they will also be

important (in invariant form) for the description of actual 3-D shapes. In addition, there may

be some benefit in combining the moment invariant approach with an analysis of the Minkowski

functionals [11] of a given shape, using the dimensionless approach of the Blaschke diagram.

I.II Higher order moment invariants in 2-D and 3-D

We have expanded our study of moment invariants and employed a description of shapes based

on 2-D and 3-D moments of second order. In 1-D, the second order moment of a distribution is

generally known as its variance (i.e., a measure for the width of the distribution). The third and

fourth order moments are known as skewness and kurtosis, respectively, and provide additional

information about the shape of the distribution. In 2-D and 3-D, similar higher order moments

can be defined. The number of moments increases rapidly with increasing order, and, in addition,

they depend on the choice of reference frame, so that it becomes imperative to determine which

combinations of moments are invariant with respect to affine and/or similarity transformations.

In 3D, the central geometric (cartesian) moments can be defined as

µpqr =

∫∫∫ +∞

−∞
drxpyqzrD(r) =

∫∫∫
D
drxpyqzr, (1)

where D(r) is the object’s shape function. The derivation of moment invariant combinations is

based on the existence of invariant geometric primitives.
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There are four invariant geometric primitives in 3D: the distance between two points, the area

of a triangle formed by three points, the dot product between two vectors connecting three points,

and the volume of the irregular tetrahedron formed by four non-coplanar points. If we place one

of these points in the origin, then the invariants can be written as (omitting constant pre-factors

of 1/2 for A and 1/6 for V ):

d(i) = |ri|; (2a)

A(i, j) = |ri × rj |; (2b)

p(i, j) = ri · rj ; (2c)

V (i, j, k) = (ri × rj) · rk. (2d)

Rotational moment invariants can now be obtained by considering integrals of powers of products

of these invariant primitives over the volume of the object:

JαβγδdApV (i, j, . . . , p) =

∫∫∫ +∞

−∞
dridrj . . . drp d(i)αA(j, k)βp(l,m)γV (n, o, p)δD(ri)D(rj) . . . D(rp).

(3)

By substituting the coordinate expressions for the primitives into this integral and rewriting the

integrals as products of geometric moments, one obtains many expressions for potential invariants.

Note that the notation p(l,m)γ includes both p(1, 2)2 and p(1, 2)p(1, 3); i.e., multiple sets of points

can (and should) be used to enumerate all invariants.

Our derivations show that this approach does indeed reproduce all three moment invariants of

second order:

J2000
dApV (1) =

∫∫∫ +∞

−∞
dr1 d(1)2D(r1)

→ J1 = (µ200 + µ020 + µ002)/µ
5/3
000.

J0200
dApV (1, 2) =

∫∫∫ +∞

−∞
dr1dr2A(1, 2)2D(r1)D(r2)

→ J2 =
(
µ200µ020 + µ020µ002 + µ002µ200 − (µ2110 + µ2101 + µ2011)

)
/µ

10/3
000 .

J0002
dApV (1, 2, 3) =

∫∫∫ +∞

−∞
dr1dr2dr3 V (1, 2, 3)2D(r1)D(r2)D(r3)

→ J3 =
(
µ200µ020µ002 + 2µ110µ101µ011 − µ200µ2011 − µ020µ2101 − µ002µ2011

)
/µ5000.

We have completed the derivation of all possible third order invariants (we have found 13 of

them). The explicit expressions for the invariants are lengthy and not particularly illuminating, so

here we only report the integrands that give rise to the invariants shown in Table 3.
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Integrand Invariant Order Exponent

d(1)3 (series) 3 2 (3)

p(1, 2)3 K1 3 4 (3, 3)

d(1)2d(2)2p(1, 2) K2 3 4 (3, 3)

p(1, 2)A(1, 2)2 1
2(K2 −K1) 3 4 (3, 3)

V (1, 2, 3)3 0 3 6 (3, 3, 3)

V (1, 2, 3)d(1)2d(2)2d(3)2 0 3 6 (3, 3, 3)

V (1, 2, 3)A(1, 2)2d(3)2 0 3 6 (3, 3, 3)

V (1, 2, 3)p(1, 2)2d(3)2 0 3 6 (3, 3, 3)

p(1, 2)p(1, 3)p(1, 4)d(2)2d(3)2d(4)2 K9 3 8 (3, 3, 3, 3)

V (1, 2, 3)V (1, 2, 4)V (1, 3, 4)V (2, 3, 4) K12 3 8 (3, 3, 3, 3)

p(1, 2)p(3, 4)d(1)2d(2)2d(3)2d(4)2 K2
2 3 8 (3, 3, 3, 3)

p(1, 4)p(2, 3)d(2)2d(4)2A(2, 3)2 K2(K2 −K1) 3 8 (3, 3, 3, 3)

d(1)A(1, 2)2 (series) 3 11/3 (3, 2)

V (1, 2, 3)p(2, 3)d(1)2 0 3 16/3 (3, 2, 2)

V (1, 2, 3)p(1, 2)p(3, 4)d(4)2 0 3 21/3 (3, 2, 2, 2)

p(1, 2)p(2, 3)2d(1)2 K3 3 17/3 (3, 3, 2)

p(1, 2)p(2, 3)d(1)2d(3)2 K4 3 17/3 (3, 3, 2)

p(1, 2)A(2, 3)2d(1)2 K8 3 17/3 (3, 3, 2)

V (1, 2, 3)2p(1, 2) K13 3 17/3 (3, 3, 2)

p(1, 2)p(2, 3)p(3, 4)d(1)2d(4)2 K5 3 22/3 (3, 3, 2, 2)

p(1, 2)p(2, 3)p(3, 4)A(1, 4)2 K6 3 22/3 (3, 3, 2, 2)

p(1, 3)A(1, 2)2A(3, 4)2 K7 3 22/3 (3, 3, 2, 2)

V (1, 2, 3)V (1, 2, 4)A(3, 4)2 K10 3 22/3 (3, 3, 2, 2)

V (1, 2, 3)V (1, 2, 4)p(3, 4)2 K11 3 22/3 (3, 3, 2, 2)

V (1, 2, 3)V (1, 2, 4)V (2, 3, 4)p(1, 3) 0 3 23/3 (3, 3, 3, 2)

V (1, 2, 3)A(1, 2)2p(3, 4)d(4)2 0 3 23/3 (3, 3, 3, 2)

Table 3: All possible combinations for the integrand that result in third order moment invariants.

Explicit expressions for the parameter Ki are available upon request.
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In 2D, the derivation of higher order moment invariants is simplified by starting from complex

moments, defined as:

cpq =

∫∫
D(x, y)(x+ iy)p(x− iy)q dxdy =

∫ ∞
0

∫ 2π

0
dθdr rp+q+1ei(p−q)θD(r, θ), (4)

where the second integral employs polar coordinates. Flusser, Suk, and Zitová [12] have shown

that rotational invariants, I, of order n can be constructed as

I =
n∏
i=1

ckipiqi with
n∑
i=1

ki(pi − qi) = 0. (5)

Using their approach, we have shown that there are six rotational moment invariants of third order,

four of them are similarity invariants, and two are skew invariants. They are given by:

c11, c21c12,<[c20c
2
12],<[c30c

3
12]; =[c20c

2
12],=[c30c

3
12]. (6)

In addition, there are affine invariants of order r, which are derived from the following integrals (in

a manner similar to that used for the 3-D affine invariants):

I(D) =

∫∫
· · ·
∫∫ r∏

k,j=1

C
nkj

kj

r∏
i=1

D(xi, yi)dxidyi (7)

with

Cij = xiyj − xjyi. (8)

Flusser and Suk have shown that there are 80 independent affine invariants of order less than or

equal to 12. We have created an efficient and accurate algorithm to compute all affine, similarity,

and skew 2-D moment invariants of a binary object of order up to and including 12. This algorithm

has been used in the final year of this project to analyze the shapes of γ′ precipitates in 2-D sections

(electron or optical micrographs) of a variety of Ni-based superalloys. Several OEMs (GEAE, Rolls

Royce) have expressed an interest in the use of shape moments and moment invariants to study

precipitate shapes from 2D sections instead of in 3D; we have started the analysis of the relation

between 2D and 3D moment descriptions, and we expect to be able to submit a paper on this topic

to Acta Materialia in early 2011.

I.III Shape fitting using Zernike moments

In addition to cartesian moments, one can also use other moments to describe shapes. One particu-

lar class of moments of interest for our work is known as the Zernike moments. These moments are

defined with respect to the Zermike functions, which are essentially spherical harmonics modulated

by radial functions in such a way that the set of functions is orthonormal inside the unit ball.
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Mathematically, the Zernike functions are defined as (using spherical coordinates (r, θ, φ)) [13]:

Zmnl(r) =
k∑
ν=0

qνklr
2ν+lY m

l (θ, φ), (9)

where k = (n− l)/2 and

qνkl =
(−1)k+ν

22k

√
2l + 4k + 3

(
2k

k

)(
k

ν

)(
2(k + l + ν) + 1

2k

)(
k + l + ν

k

)−1
. (10)

The Zernike moments for an object are then defined as follows:

Ωm
nl =

∫∫∫
drD(r)Zmnl(r), (11)

where D(r) is the shape function of the object. Since the functions are only defined inside the unit

ball, the object must be scaled to fit inside the ball, typically with a maximal radius of 0.75. The

Zernike moments can be computed explicitly in term of the cartesian moments µpqr:

Ωm
nl = cml

n−l
2∑

ν=0

qνnl

b l−m
2
c∑

µ=0

(−1)m+µ

2m+2µ

(
l

µ

)(
l − µ
m+ µ

) m∑
α=0

(−i)m−α
(
m

α

) ν∑
κ=0

(
ν

κ

) κ+µ∑
β=0

(
κ+ µ

β

)
×

µ2β+α,2(κ+µ−β)+m−α,2(ν−κ−µ)+l−m.

The rotationally invariant moments Fnl are computed by taking the norm over all values of m. For

the cube with edge length L, the resulting low order rotationally invariant Zernike moments are

(all invariants with odd n vanish):

F00 = 4L3

√
3

π
;

F20 = 2L3

√
7

π
|3− 5L2|;

F40 =
1

10
L3

√
11

π
|75− 350L2 + 399L4|;

F44 =
4

5
L7

√
231

π
;

F60 =
1

28
√

15π
L3|3675− 33075L2 + 92169L4 − 83369L6|;

F64 = 2L7

√
1

35π
|231− 481L2|;

F66 =
16

7
L9

√
130

3π
;

F80 =
1

3360
L3

√
19

π
|33075− 485100L2 + 2396394L4 − 5002140L6 + 3823963L8|.
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We have created a series of algorithms for the efficient numerical computation of the Zernike

functions and moments. An example comparison between numerical and theoretical values for a

cube are shown in Table 4.

Ωn Theory Numerical % diff.

F00 0.094410 0.094410 0.0

F20 0.186197 0.186197 0.0

F40 0.219383 0.219383 0.0

F44 0.001156 0.001157 0.0

F60 0.189271 0.189271 0.0

F64 0.006137 0.006137 0.0

F66 0.000120 0.000120 0.0

F80 0.115630 0.115629 0.0

Table 4: Theoretical and computed rotationally invariant Zernike moments along with the relative errors

for a cube with edge length L = 0.289063 (= 18.5/64.0).

The reconstruction of a shape function D(r) from its moments is performed by the following

general summation:

D(r) =

∞∑
n=0

n∑
l=0

l∑
m=−l

Ωm
nlZ

m
nl(r)

where only terms with n − l even are taken into account. We have used this approach to fit the

shapes of γ′ precipitates in UMF-20 and Rene-88 DT superalloys.

Fig. VI shows shape fits for two γ′ particles; in (a)-(b), a UMF-20 cuboidal particle is shown

along with its fit using Zernike moments up to order n = 20. The agreement between the ex-

perimental shape and the reconstructed shape is quite good, indicating that the Zernike moment

approach may become useful for the description of precipitates with relatively simple shapes. In

Fig. VI(c)-(d), a fit of a dendritic γ′ particle from a Rene-88 DT alloy is shown. Again, 20 orders of

Zernike moments were used. While the reconstructed shape does resemble the experimental shape,

it is clear that additional moments are needed to fully reproduce the correct shape.

We plan to use this approach to generate particles within a desired shape class. For instance,

one could compute the Zernike moments for a large number of experimental precipitates, and then

use the distributions of moments to sample new moments and create similar shapes. Such an

approach might become useful for the creation of digital microstructures.

I.IV Application to synthetic microstructures

The observations described in the previous section have an impact in the area of digitally syn-

thesized microstructures, in particular the quantitative comparison of experimental and simulated
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Figure VI: Experimental ((a) and (c)) and reconstructed ((b) and (d)) shapes of γ′ precipitates in

UMF-20 (top row) and Rene-88 DT (bottom row) alloys, using 20 orders of Zernike moments.

microstructures. The moment invariant approach removes the subjective comparison of 3-D vi-

sualizations of experimental and modeled microstructures and replaces it with an objective and

quantitative comparison. If a numerical model of a microstructure is to be a correct representation

of a real microstructure, then, at the very least, the distribution of the microstructural components

in the normalized moment invariant space should be the same for both microstructures. In other

words, if a set of γ′ precipitates, determined from an experimental 3-D reconstruction, occupies

a certain region in the moment invariant space, then the precipitate shapes obtained from, for

instance, a phase field simulation of this microstructure, should occupy the same region of the

moment invariant space. If the two sets of points do not overlap, then the simulation parameters

may need to be fine-tuned. Therefore, a moment invariant analysis can become an important tool

to match simulation parameters to experimental microstructures.
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We have worked with Dr. M. Groeber (AFRL) on the quantitative comparison of synthetic ex-

perimental microstructures. The programs used to generate microstructures are described in [14,15];

different starting shapes were used to create the final grain shapes: ellipsoids, superellipsoids, and

cuboctahedra (the latter because their already have 14 facets, close to the average number of grain

nearest neighbors in a real microstructure). Superellipsoids are defined in cartesian coordinates as:∣∣∣x
a

∣∣∣n +
∣∣∣y
b

∣∣∣n +
∣∣∣z
c

∣∣∣n = 1. (12)

where n is a positive real number. The equation describes a range of shapes, including cubes (n

= ∞), cuboids (n > 2), octahedra (n = 1), ellipsoids (n = 2), and their anisotropically scaled

equivalents. After the grains for the microstructure are generated, they are placed one at a time in

the volume. After each grain is placed, the number and size of neighbors in the synthetic dataset

is checked against the distribution from the experimental dataset. If placement does not match

the experimental distribution, the grain is replaced and checked again. This is repeated until all

grains have been placed, then Voronoi tessellation is used to fill space in the volume. Finally, crys-

tallographic orientations are assigned to the grains to match the orientation distribution function,

the misorientation distribution function, and the microtexture function. The various orientation

distribution functions and microtexture function are not pertinent to shape characterization, so the

accuracy with which they are assigned was not considered in our research.

Statistic Experimental Ellipsoidal Superellipsoidal Cuboctahedral

Min 1.04 1.11 1.16 1.05

Max 989.91 883.59 888.41 586.72

Median 17.67 19.50 36.69 24.55

Mean 46.29 41.51 53.13 38.23

Std Dev 75.59 69.13 59.69 43.48

Table 5: The minimum, maximum, median, mean, and standard deviation of volume in µm3 for

the experimental, ellipsoidal, superellipsoidal, and cuboctahedral datasets.

We begin by looking at basic descriptors of the microstructures, such as the grain size. The

statistics for the grain size distributions of the four datasets are given in Table 5. The histograms

for grain size are shown in Fig. VII. We can see that the minimum grain size of the three synthetic

microstructures does not differ greatly from that of the experimental microstructure. The largest

grains in the computer generated, synthetic microstructures tend to be smaller than the largest

grains in the experimental microstructure. More importantly, we should examine the morphology

of the largest grains.

The largest grains from each dataset are shown in Fig. VIII. The morphology of the experi-

mental grain is quite different from that of the synthetic microstructures. It is long and has three

relatively distinct sections which could either be representative of the true microstructure or due
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to segmentation errors which could cause separate grains to join incorrectly. The ellipsoidal grain

is essentially ellipsoidal with some surface roughness or concavity from when surrounding grains

took volume from it.

(a) Experimental (b) Ellipsoidal

(c) Superellipsoidal (d) cuboctahedral

Figure VII: The volume histograms for the (a) experimental, (b) ellipsoidal, (c) superellipsoidal,

and (d) cuboctahedral datasets.

The superellipsoidal and cuboctahedral grains look more like a grain from a real microstructure

and not just simply like an ellipsoid. However, they do not have a similar morphology to the largest

experimental grain as they do not have an appearance of multiple sections. Grains based on single

instantiations of ellipsoidal, superellipsoidal, and cuboctahedral shapes do not approach the shape

of the experimental grain because of its complexity. Two or more instantiations of different shape
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classes would need to be joined in order to better match the complexity of the outlier experimental

grains with multiple sections.

(a) Experimental (b) Ellipsoidal

(c) Superellipsoidal (d) cuboctahedral

Figure VIII: Visualizations of the largest grains from the (a) experimental, (b) ellipsoidal, (c)

superellipsoidal, and (d) cuboctahedral datasets.

We can see that the volume statistics of the experimental microstructure are actually matched

best by the ellipsoidal microstructure, while the superellipsoidal microstructure does the worst job.

This is particularly apparent when one looks at the mean and median values. The superellipsoidal

dataset does a particularly bad job of matching the median value for the volume of the experimental

microstructure.

The plots of aspect ratio τ1 versus τ2 are shown in Fig. IX. The basic statistics of τ1/τ2 are
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Statistic Experimental Ellipsoidal Superellipsoidal Cuboctahedral

Min 1.00 1.00 1.01 1.00

Max 5.00 4.21 3.37 4.53

Median 1.34 1.42 1.37 1.35

Mean 1.39 1.57 1.44 1.42

Std Dev 0.279 0.485 0.322 0.315

Table 6: The minimum, maximum, median, mean, and standard deviation of the aspect ratio τ1/τ2

for the experimental, ellipsoidal, superellipsoidal, and cuboctahedral datasets.

given in Table 6. The mean, median, and standard deviations of τ1/τ2 for the experimental dataset

are lower than those of the synthetic datasets, while the maximum τ1/τ2 value is highest for the

experimental dataset. So, while on average the real grains tend to have an aspect ratio slightly

smaller than the synthetic grains, the extreme values are higher for the experimental dataset. The

cuboctahedral dataset matches the real dataset best of the synthetic datasets statistically. The

histograms of τ1/τ2 are shown in Fig. X. The standard deviation of τ1/τ2 for the experimental

microstructure is less than that of the synthetic microstructures, which we can also see as manifested

in the smaller tail on the right side of the histogram for the experimental microstructure. With the

experimental microstructure we tend to see fewer grains with aspect ratio larger than approximately

two, while the synthetic microstructures tend to have more grains with aspect ratio greater than

two.
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(a) Experimental (b) Ellipsoidal

(c) Superellipsoidal (d) cuboctahedral

Figure IX: The aspect ratio plots for the (a) experimental, (b) ellipsoidal, (c) superellipsoidal, and

(d) cuboctahedral datasets.
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(a) Experimental (b) Ellipsoidal

(c) Superellipsoidal (d) cuboctahedral

Figure X: The histograms of τ1/τ2 for the (a) experimental, (b) ellipsoidal, (c) superellipsoidal,

and (d) cuboctahedral datasets.
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The grains with maximum aspect ratio are shown in Fig. XI. The volume and Ω̄3 for the grains

with maximum aspect ratio are given in Table 7.

Statistic Experimental Ellipsoidal Superellipsoidal Cuboctahedral

Volume (µm3) 3.5 285.7 50.9 8.9

Ω̄3 0.12 0.54 0.86 0.57

Table 7: The volume and Ω̄3 of the grain with maximum aspect ratio τ1/τ2 for the experimental,

ellipsoidal, superellipsoidal, and cuboctahedral datasets.

Statistic Experimental Ellipsoidal Superellipsoidal Cuboctahedral

Min 0.024 0.186 0.105 0.172

Max 0.877 0.950 0.871 0.893

Median 0.632 0.742 0.606 0.679

Mean 0.605 0.726 0.585 0.663

Std Dev 0.150 0.121 0.134 0.103

Table 8: The minimum, maximum, median, mean, and standard deviation of the second order

moment invariant Ω̄3 for the experimental, ellipsoidal, superellipsoidal, and cuboctahedral datasets.

The grains from each dataset plotted in moment invariant space are shown in Fig. XII. Ω̄3

values for the grains with maximum aspect ratio τ1/τ2 for each dataset are given in Table 7. Ω̄3 for

the maximum aspect ratio grain of the experimental dataset is quite low, in fact it is lower than the

minimum Ω̄3 for the ellipsoidal and cuboctahedral datasets, and just above the minimum for the

superellipsoidal dataset. The Ω̄3 values for the maximum aspect ratio grain of the experimental,

ellipsoidal and cuboctahedral datasets are all lower than their respective mean and median Ω̄3.

The Ω̄3 values of the maximum aspect ratio grain for the superellipsoidal dataset is larger than

its mean and median, and is actually very near the maximum value of Ω̄3. In the experimental

dataset, high aspect ratio grains tend to have much more complex morphologies compared with

their average grains. In the ellipsoidal and cuboctahedral datasets, the high aspect ratio grains tend

to be more complex, but their morphologies are not as complex as their experimental counterparts.

It is interesting that in the superellipsoidal dataset, the highest aspect ratio grain does not have a

particularly complex morphology as measured by moment invariants.

The basic statistics for Ω̄3 for each of the datasets are given in Table 8. The ellipsoidal and

cuboctahedral datasets have larger means and medians than the experimental dataset, while the su-

perellipsoidal datset has a smaller mean and median than the experimental dataset. This indicates

that the experimental dataset is more complex than ellipsoidal and cuboctahedral datasets, and

slightly less complex than the superellipsoidal dataset. Also, the minimum Ω̄3 of the experimental

dataset is much lower than any of the synthetic datasets. The maximum Ω̄3 for the experimental,
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(a) Experimental (b) Ellipsoidal

(c) Superellipsoidal (d) cuboctahedral

Figure XI: The grains with maximum aspect ratio from the (a) experimental, (b) ellipsoidal, (c)

superellipsoidal, and (d) cuboctahedral datasets.
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superellipsoidal, and cuboctahedral datasets are all similar and less than 0.9, while the ellipsoidal

dataset has a maximum of 0.95, which is near 1, the value of Ω̄3 for an ellipsoidal shape. This is not

surprising considering the starting grain shape would have been an ellipsoid in this dataset, and

thus have Ω̄3 = 1 before placement in the experimental volume when some volume can be taken

from it by surrounding grains and any alteration of the shape due to the tessellation step during

microstructure generation.

The plots of the datasets in normalized moment invariant space are given in Fig. XII. With

all three datasets, the majority of the grains sit above approximately Ω̄3 = 0.5, though we can see

that the ellipsoidal dataset sits further to the right along the Ω̄3 axis. It also appears that the

grains in each dataset tend to sit near the isotropic curve, but particularly in the experimental

and superellipsoidal datasets. The tail of grains than run near the isotropic curve towards lower

values of Ω̄3 is more pronounced in the experimental dataset than in the others. There is a

noticeable lack of datapoints in the tail with low Ω̄3 in the ellipsoidal and cuboctahedral dataset.

The superellipsoidal dataset does have a tail with low values of Ω̄3, however, they are further

away from the isotropic curve than in the experimental dataset. This indicates that the grains

with small Ω̄3, those with more complex morphologies, in the superellipsoidal dataset tend to have

higher aspect ratios than those in the experimental dataset, indicating that the cause of complex

morphology in the experimental dataset is not being mimicked in the synthetic datasets. The

superellipsoidal microstructure does a good job of matching the experimental microstructure in

moment invariant space.

The basic statistics of the shape quotient Q are given in Table 9. Since Q is a ratio of surface

area and volume which can be used as a measure of shape complexity. It has a maximum value of 1

for a sphere as a sphere has minimum surface area to volume, and decreases as surface area relative

to volume increases, so decreasing Q corresponds to increasing complexity as measured by the

surface area to volume ratio. We can see that the minimum, maximum, median, and mean of the

cuboctahedral dataset match those of the experimental dataset well. Next best is the ellipsoidal

dataset, followed by the superellipsoidal dataset, which does not match particularly well. The

ellipsoidal dataset tends to have larger values of Q and so has less surface area relative to volume

Statistic Experimental Ellipsoidal Superellipsoidal Cuboctahedral

Min 0.201 0.200 0.198 0.306

Max 0.901 0.922 0.886 0.904

Median 0.719 0.760 0.623 0.711

Mean 0.684 0.729 0.611 0.699

Std Dev 0.128 0.119 0.130 0.096

Table 9: The minimum, maximum, median, mean, and standard deviation of the shape quotient Q

for the experimental, ellipsoidal, superellipsoidal, and cuboctahedral datasets.
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than the experimental dataset. The superellipsoidal dataset tends to have smaller values of Q and

so has more surface area to volume relative to the experimental dataset. So it is apparent that the

surface area to volume does change depending on the starting grain shape.

(a) Experimental (b) Ellipsoidal

(c) Superellipsoidal (d) cuboctahedral

Figure XII: The plots of grains in moment invariant space for the (a) experimental, (b) ellipsoidal,

(c) superellipsoidal, and (d) cuboctahedral datasets.

Another morphological descriptor that can be studied to understand shape complexity is the

concavity. The statistics for the measure of concavity V/Vconv are given in Table 10. Remember

that V/Vconv is a measure of concavity that equals 1 for a sphere, and as concavity increases,

V/Vconv decreases. From Table 10, we can see that the ellipsoidal dataset is the most convex,

followed by the cuboctahedral dataset, then the experimental dataset, and the least convex is
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the superellipsoidal dataset. The ellipsoidal dataset is much more convex than the experimental

dataset, while the cuboctahedral dataset matches experimental observations well with the median,

but not well with the mean. The minimum V/Vconv values of the ellipsoidal and cuboctahedral

datasets are about double the experimental observations, so the extreme values, which correspond

to particularly concave and complex grains from the experimental dataset, are not being created

in the ellipsoidal and cuboctahedral datasets. The superellipsoidal dataset, however, is more con-

vex than the experimentally observed grains. The minimum, mean, and median are all lower in

the superellipsoidal dataset than in the experimental dataset, so not only does the dataset have

more concavity on average, its extreme values, or most concave grains, are more concave than the

experimentally observed grains.

Statistic Experimental Ellipsoidal Superellipsoidal Cuboctahedral

Min 0.366 0.701 0.279 0.683

Max 0.984 0.999 0.979 0.984

Median 0.932 0.960 0.861 0.937

Mean 0.899 0.953 0.837 0.923

Std Dev 0.0879 0.0282 0.1097 0.0463

Table 10: The minimum, maximum, median, mean, and standard deviation of V/Vconvexhull for

the experimental, ellipsoidal, superellipsoidal, and cuboctahedral datasets.

It is possible that morphological outliers due to segmentation errors affect the distribution of

the experimental volume in ways which are difficult to reproduce. For example, if two grains are

joined through segmentation errors, it is difficult and unrealistic to reproduce the combined grain

using a single ellipsoid, superellipsoid, or cuboctahedron. It is likely, however, that we are using

statistics generated from these badly segmented grains to generate our synthetic microstructures,

so there will be a bias in the synthetic microstructures by trying to reproduce statistics that are

incorrect to begin with. If this is the case, identification of those morphological outliers will be

needed. We can identify those morphological outliers effectively using moment invariants.

Since Ω̄3 decreases with increasing complexity, and we expect the morphological outliers to be

complex, we can find morphological outliers by looking at the grains below some threshold value

of Ω̄3. The grains in the experimental dataset with Ω̄3 less than two standard deviations below the

mean Ω̄3 are shown in Fig. XIII. We can see that there are some small grains that are morphological

outliers, and also many large grains which are morphological outliers. Among them is the largest

grain from the dataset. The large grains appear to mostly be where two or more grains have been

joined together incorrectly due to segmentation errors. The mean Ω̄3 of these grains is 0.2176.

When they are removed from the dataset, the new mean is 0.6235, median is 0.6413, minimum is

0.3068, maximum is 0.8767, and standard deviation is 0.1262. Compare that with the old mean of

0.605 and it is apparent that the morphological outliers do have an effect on the dataset, not just
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the extreme values.

Figure XIII: A visualization of the grains in the experimental dataset with Ω̄3 less than two standard

deviations below the mean Ω̄3.

It is a very complex task to reproduce real polycrystalline microstructures. There are different

methods that can be used and tweaks that can be made to enhance the method of reproduction

to match one descriptor, but it may have a negative effect on another descriptor. This is apparent

when one considers the good matching of the superellipsoidal dataset to the experimentally observed

grains for some descriptors, in moment invariant space for example, but then the poor matching of

the measure of convexity V/Vconv. Steps should be taken to improve the segmentation of datasets

that are used for the synthetic dataset generation so that artificial morphological outliers do not

have a bad effect on the microstructure generation.
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II Conclusions

We have applied the theory of 3-D moment invariants to a variety of shapes, including experimental

serial sectioning data sets and synthetically generated microstructures. The method is easy to use,

and allows for a quantitative description of shapes. Further applications of this approach are

currently being considered, including extension to higher order moment invariants.
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